Subspaces and the basis
선형 대수
Subspaces
- \(S\) is a subset of \(V\).
- S ⊆ V
- S is a vector space
- include zero vector
- closed under addition
- closed under scalar multiplication
Basis
- minimum set of vectors that spans the subset
- \(S\) is a basis of \(V\) ⟺
- elements of \(S\) are linearly independent
- \(S\) spans \(V\)
- 특정 부분집합의 basis의 linear combination으로 표현되는 모든 벡터는 유일하다.