linear independence

선형 대수
공개

2025년 3월 2일

Linear independence

Definition

  • Dependence: one of the vectors in the set can be written as a linear combination of the others.
  • Independence: ⫬ dependence

Theorem

S = \({v_1, v_2, ..., v_n}\)

\(S\) is linearly dependent ⟺ ∃(\(c_i\) is not 0) \(c_1v_1 + c_2v_2 + ... + c_nv_n = 0\) is \(c_1 = c_2 = ... = c_n = 0\).

  • if \(c_1 = c_2 = ... = c_n = 0\), then \(S\) is linearly independent.
맨 위로